
December 1997 The Delphi Magazine 35

Get On The Web With Delphi 3
Everything you need to know about writing web applications
using Delphi 3 (but didn’t know you needed to ask): Part 1
by John O’Connell

Arather ambitious subtitle, I
know, but there’s a lot to writ-

ing web server applications with
the new Delphi 3.0 classes and
components which isn’t covered in
the manuals. Perhaps you’ve
thought about trying your hand at
writing web server apps? In Issues
24 and 25 Bob Swart covered the
basics of writing web applications
using Delphi 3.0’s new compo-
nents, here I’ll endeavour to
describe what else you’ll need to
know but obviously I can’t promise
that I’ll have covered absolutely
everything else you’ll need to know
in this article and the follow-up
which will come next month! All of
the demo applications and web
pages mentioned here are on this
month’s disk.

By way of getting started let’s
look at what a web server applica-
tion actually is and how one gener-
ally works: I’m assuming you know
a little about how web server appli-
cations work and that you’re famil-
iar with terms such as HTTP, MIME
types and URL as used in relation
to the internet/intranet, if not then
take a look at previous articles by
Bob Swart (Issue 15) and Steve
Troxell (Issue 16) which discuss
writing CGI and WinCGI web appli-
cations and some of the associated
terminology.

The next four sections are essen-
tially a web server applications
primer which distills what has
previously been discussed about

CGI, WinCGI and ISAPI in previous
articles.

A web server application (or just
web application) executes on a
web server in response to a
request from a web browser which
specifies the URL of the application
it wants to execute. The applica-
tion’s output (which must be of
some MIME type, such as
text/html) is captured by the web
server and delivered to the web
browser via HTTP. In fact all com-
munication between the web
browser and web server is via
HTTP, the protocol of the web. In
HTTP terms a browser sends an
HTTP client request to the server
which sends back an HTTP server
response the content of which can
be a web page or the output of a
web application specified in the
request’s URL. The output of a web
application is sometimes referred
to as a dynamic response, or a vir-
tual or dynamic web document.
Figure 1 shows a typical request
header as sent to a server and the
response header sent back from
the server.

Gateway Interfaces
All communication between the
web server and web application
takes place via a gateway interface,
the most common of which is the
Common Gateway Interface or CGI.

The first task of a web server
gateway interface is to pass details
of the request (such as the browser

name, the list of MIME types
acceptable to the browser, the IP
address of the request sender, any
request data and perhaps its
length, the request method, the
version of the HTTP protocol used
and so on) to the web application.
CGI parses or translates the
received request header (Figure 1)
into the individual request details
which are accessed by the web
application through the use of
environment variables such as
REQUEST_METHOD, QUERY_STRING and
HTTP_USER_AGENT to name but a few.
Delphi 3.0’s TWebRequest class
allows you to access request
details as object properties.

The other task of the gateway
interface is to capture the output
of the web application and pack-
age it as a response to be sent to
the browser which sent the
request. The content of the
response must be of some MIME
type recognised by the browser.

CGI web applications must be
console applications, but not all
Windows RAD tools are capable of
creating console applications. One
very well known visual RAD tool
springs to mind, but I’ll leave you
to guess its name! WinCGI, devel-
oped by Robert Denny, the author
of O’Reilly’s WebSite web server, is
a variation of CGI designed to allow
non-console web applications to
participate in the web server appli-
cations game. With WinCGI the
request is packaged as an INI file
containing the request details as
section/key values which can be
read by the web application which
then writes any response content

GET /cgi-bin/webapp.exe?custname=Jaimie+Sach HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0 (Win95; I)
Accept: image/gif, image/x-xbitmap, image/jpeg,
image/pjpeg, */*
From: user@acompany.com

HTTP/1.0 200 OK
Date: Monday, 21st July-96 15:10:00 GMT
Server: WebSite/1.1e
Content-type: text/html
Content-length: 51
<HTML><BODY><P>Hello
Jaimie+Sach</P></BODY></HTML>

➤ Figure 1:
Left column: A typical HTTP request header
Right column: a typical HTTP response header

36 The Delphi Magazine Issue 28

➤ Figure 2: A typical HTML form

to an output file named in the
request details. Because of the
additional overhead of creating the
request INI file and response
output file, WinCGI is a bit slower
than CGI but then, borrowing from
an old adage, a slow interface is
better than no interface at all.
Despite having talked about
WinCGI, there’s no good reason to
write WinCGI applications with
Delphi, which can produce stan-
dard CGI applications which are
faster and more efficient than their
WinCGI counterpart. However
WinCGI applications are much
easier to debug.

More recent gateway interfaces
are based on web server APIs:
Netscape’s NSAPI and Microsoft’s
ISAPI, the latter becoming more
and more common. A web server
which supports ISAPI calls an ISAPI
web application DLL via a prede-
fined entry point function in which
the request is processed and the
response generated. An ISAPI web
application is a DLL in which
request details or request data are
accessed via a parameter (called
an Extension Control Block) which
is passed to the entry point func-
tion (named HTTPExtensionProc);
response content is simply passed
as a parameter to a callback func-
tion (ServerSupportFunction or
WriteClient) provided by the ECB,
all of which means that data trans-
fer is very fast compared with
CGI/WinCGI. The ISAPI2 unit
included with Delphi defines the
data-types and functions used to
write ISAPI DLLs. A more detailed
discussion of ISAPI can be found in
Steve Troxell’s article in Issue 19.

Server API Or CGI?
Besides speed, the major advan-
tage of server APIs over CGI or
WinCGI is one of efficiency: server
API web applications are actually
DLLs which are loaded once and
whose entry point is executed
once for each client request.
Contrast this with CGI and WinCGI
web applications which are sepa-
rate executables which must be
loaded and unloaded for each
client request thus generating
quite a processing overhead. Not
surprisingly ISAPI and NSAPI web

applications are becoming increas-
ingly popular in the world of 32-bit
Windows web servers.

However, there is a downside to
server APIs because safe, reliable
server API web applications are
more difficult to write due to
thorny issues such as thread han-
dling which must be dealt with.
Because only one instance of the
DLL can be loaded into the web
server’s process space and the
DLL entry point function must
return as soon as possible in order
that other queued requests can be
serviced, individual threads are
spawned by the web server to serv-
ice each client request: in other
words any code in the entry point
function will most certainly be
called by different threads which
necessitates writing thread-safe
code, thus adding an extra level
of complexity for the server API
application programmer.

More importantly, because DLLs
share the host application’s
process (and address) space, so an
errant server API DLL can do more
harm to the web server than a CGI
or WinCGI application (which runs
as a separate protected process)
could ever inflict. It seems there’s a

price to pay for everything these
days.

In short, much more care is
needed writing server API DLLs.
On the other hand, the operating
system (assuming it’s Unix or
Win32) generally prevents CGI or
WinCGI applications from inadver-
tently crashing the web server.

Request Methods...
...or, how request data is passed to
the web application. The purpose
of most web applications is to
process data entered into an
HTML form (presented by the
browser) which contains basic
common GUI data entry controls
such as edit boxes, drop-down
lists, radio buttons and check-
boxes. At the press of a pushbut-
ton the form’s data is submitted as
part of a client request to a speci-
fied web application which must
generate and send back a
response. Form data is passed to a
web application by one of two
request methods each of which
have their own advantages and
disadvantages as we’ll see.

The GET request method
appends form data to the web
application’s URL. Using the form

December 1997 The Delphi Magazine 37

in Figure 2 as an example, after
pressing the Submit button to send
the form to the server the URL
becomes:

http://localhost/cgi-bin32/
showrequest.exe?fullname=
Fred+Reginald+Perry
&sex=M&sendfields=Send

We can see that the field data is
separated from the URL of the web
application by the question mark
character and each form field’s
name=value pair is separated by the
ampersand character (&). Notice
that space characters within the
form data are replaced with a plus
character (+). This is URL encod-
ing, which enables reserved char-
acters to be included as part of a
URL. Other reserved characters
are encoded as their two digit ASCII
hex code preceded by a percent
character (%), so that my name
would be John+O%27Connell when
URL encoded.

Everything after the question
mark in the above URL is known as
a query string, which must be
parsed by the web application into
individual name=value field pairs.
Figure 1 shows a GET request
header.

A CGI web application can
access the query string by reading
the QUERY_STRING environment vari-
able; a WinCGI application can
access the form data by reading
the QUERY STRING key in the [CGI]
section of the INI file containing the
request details; an ISAPI applica-
tion (or Internet Server Applica-
tion: ISAs as Microsoft like to call
them) simply reads the
lpszQueryString field of the ECB
which is passed to the web applica-
tion’s exported HTTPExtensionProc
function.

The POST request method differs
from GET in that the form data is not
appended to the URL but must be
read separately by the web appli-
cation. For a CGI application this
means reading the data from the
standard input stream. WinCGI
conveniently parses the POSTed
data into URL decoded name=value
pairs placed in the [Form Literal]
section of the request INI file. An
ISAPI DLL reads POSTed data from

ECB.lpbData and by calling the
ECB.ReadClient function if more
data needs to be read in addition to
that in lpbData. The length of the
POSTed data is contained in the CON-
TENT_LENGTH CGI variable or in
ECB.cbTotalBytes for an ISA. Note
that POSTed request data need not
be URL encoded (after all it’s not
part of the URL) though some
servers do so anyway.

A POST request header is similar
to a GET request header:

POST /cgi-bin/webapp.exe HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/3.0 (Win95; I)

Accept: image/gif, image/x-xbitmap,

image/jpeg, image/pjpeg, */*
From: user@acompany.com

Content-Length: 128

except that the request data is not
part of the header but is read by
the web application which reads
the request data whose length is
indicated by the content length
header item.

Which Request Method?
The main advantage of using GET is
its faster request data transfer. In
addition, if, after executing the web
application, the URL is book-
marked then because the query
string is embedded within the
bookmark URL, the web applica-
tion will be executed with the
saved query string when the book-
marked URL is revisited. And
rather usefully the request query
string can be entered directly as
part of the URL which does away
with the need for an HTML form
and is useful for testing the web
application.

The disadvantages of GET are its
relative lack of security: anyone
can peer over your shoulder and
see sensitive data embedded in the
URL of a GET web application, and a
limited maximum query string
length of around 1Kb, depending
on the browser. Also the web appli-
cation’s URL can become quite
cluttered and unsightly particu-
larly with long query fields.

The advantages of using POST are
the relative security and the fact
that much more request data can
be passed to the web application.

Bear in mind the necessity for an
HTML form though.

You’ll find that most web search
sites (such as Lycos and Yahoo)
use GET.

WebModules, WebRequests
And WebReponses
The core logic of a Delphi 3.0 web
application resides in the WebMod-
ule onto which you can drop the
various non-visual components
used to build a web application.

A WebModule is actually a DataMod-
ule which contains an additional
built-in component, a WebDis-
patcher. The WebDispatcher is
responsible for the flow of control
in the web application as we’ll see
later. Although the WebModule has
its own built-in WebDispatcher, a
separate TWebDispatcher compo-
nent is provided in the Internet tab
of the component palette. This
allows you to convert any DataMod-
ule to a WebModule, in fact you could
add a TWebDispatcher to all your
DataModules which could then be
used as the main form of a web
application project. Having a TWeb-
Dispatcher (or any other non-
visual component from the Inter-
net component page) in a DataMod-
ule used by other non-web
applications won’t have any side
effects on those other applica-
tions, other than some increase in
code size. Conversely you can use
a WebModule as a DataModule in a GUI
database application.

Note that only one WebDispatcher
can exist in a web application:
adding a TWebDispatcher to a Web-
Module is not allowed by Delphi and
raises an exception.

If you examine the web applica-
tion’s project source you’ll notice
that it’s a little different from that
of your usual application: there’s
no sign of the Forms unit usually
seen in the DPR file but instead the
HTTPApp unit is included along with
the WebModule’s unit and another
unit which defines the project’s
Application variable type. In the
case of a CGI or WinCGI applica-
tion, the Application variable’s
type will be TCGIApplication as
defined in the CGIApp unit used by
the project source; an ISAPI or
NSAPI project’s Applicationwill be

38 The Delphi Magazine Issue 28

of type TISAPIApplication as
defined in the ISAPIApp unit. You
may be wondering why there’s no
separate TWinCGI Application
object type, well it’s not needed
because a console ({$APPTYPE
CONSOLE}) TCGIApplication applica-
tion is a CGI web application,
whereas a GUI ($APPTYPE GUI})
TCGIApplication is a WinCGI
application, obvious really.

The WebDispatcher
As its name implies, TWebDispat-
cher dispatches things: to be pre-
cise it passes a TWebRequest object
that represents the HTTP request
and a TWebResponse object, the
HTTP response, to one or more
TWebActionItem(s), each of which
has an OnAction event property
whose handler will usually contain
code to build the content for the
response object. Essentially the
TWebDispatcher controls the flow of
execution of a Delphi web server
application.

The TWebDispatcher’s Actions
property, of type TWebActionItems,
contains the list of TWebActionItem
objects which can each be set to
handle a specific request type.
Action items can be added or
edited via the Actions property
editor which behaves much like
the Fields property editor found in
TQuery/TTable and TStoredProc.

Each action item has properties
(which are listed and described in
Table 1) which define the type of
request it will get to handle: the
action items which get to handle
the request are those whose
MethodType and PathInfoproperties

match the TWebRequest’s MethodType
and PathInfo properties, or whose
Default property is True, regard-
less of its PathInfo. An action
item’s MethodType of mtAny will
match any TWebRequest.MethodType
which means that only the action
item’s PathInfo property need
match the TWebRequest’s PathInfo
in order for it to be selected to
handle the request. Set an action
item’s MethodType to mtAny if you
don’t care which request type the
action item can handle.

As it is possible for more than
one action item to share the same
PathInfo and matched MethodType
property values, the work of
building the response content may
be shared among multiple OnAction
event handlers, more on which
later. The TWebActionItem’s OnAc-
tion event is where the work of
building the response for a particu-
lar request is performed. The OnAc-
tion event which is of type
THTTPMethodEvent is defined as:

procedure (Sender: TObject;
Request: TWebRequest;
Response: TWebResponse;
Handled: boolean);

Sender is the TWebActionItem for
which the event is triggered: the
Request and Response parameters
are references to the TWebRequest
and TWebResponse instances which
are passed by the WebDispatcher to
the OnAction event handler. To
generate response content simply
assign to Response.Content. As a
simple example, the following
OnAction handler causes “Hello

world” to be displayed by the
browser which sent the request:

procedure TWebModule1.WebModule1

WebActionItem1Action(

Sender: TObject;

Request: TWebRequest;

Response: TWebResponse;

var Handled: Boolean);

begin

Response.Content :=

‘Hello world’;

end;

The final event parameter, Handled,
determines whether the response
has been handled and is ready to
be sent to the server: this is very
important where multiple action
items are to be used to build the
response content to a request. Set-
ting Handled to True signals to the
web dispatcher that the request
has been handled, otherwise
another OnAction event handler
will be called to handle the request
until Handled is set to True.

In an OnAction event the default
value of Handled is True so it can
usually be left alone, but setting it
to False will trigger the OnAction
event of the next chained action (if
any) item and so on. Setting Han-
dled to False in the default action
item’s OnAction handler causes no
response content to be sent back
to the browser, which will then dis-
play a “no response from server”
error message.

The web dispatcher sandwiches
calls to OnAction event handlers
between it’s own two event
handlers, BeforeDispatch and
AfterDispatch both of type
THTTPMethodEvent, the OnAction
event type.➤ Table 1: TWebActionItem properties

Property Purpose

Default If True the action item will be triggered if no other action items handle the request

Enabled Enables or disables the action item

MethodType Specifies the request method of TMethodType = (mtGet, mtPost, mtHead, mtPut, mtAny) which
the Action item can handle

PathInfo If the request URL contains the specified PATHINFO then this action item will be triggered to
handle the request. The PATHINFO of a URL is the part of it preceded by a ‘/’ and following the
web application name. For example, the PathInfo of
http://www.webserver/cgi-bin/mywebapp.exe/greeting is “/greeting”

OnAction The event handler in which content can be assigned to the response

December 1997 The Delphi Magazine 39

The application CHAINED.DPR
demonstrates web action item
chaining and the effects of various
settings of the Handled parameter
of the chained THHTPMethodEvent
handlers. In this application each
OnAction event handler appends
the sender’s name to the response
content which ultimately is sent to
the browser as soon as the last
matching OnAction handler has
handled the request, as passed to
each action item chosen by the
web dispatcher to handle the
request type, and set the Handled
parameter to True.

In order to try making things a bit
clearer, let’s look at the flow of a
web application through the web
dispatcher’s action items.

Firstly, the Application object
creates the Request and Response
instances, each of the appropriate
type such as TCGIResponse and

TCGIRequest (see Table 2), which
are then passed to the web dis-
patcher. Secondly, the web dis-
patcher’s BeforeDispatch handler
is called with the Request and
Responsepassed as parameters and
Handled set to False, this ensures
that an OnAction event will be trig-
gered to handle the request.
Setting Handled to True will signal
the request as handled and no
OnAction events will be triggered in
which case the AfterDispatch
event handler will be called, pro-
vided no response content has
been sent to the server (with a call
to the Response object’s SendRe-
sponse method). Then, assuming
the request hasn’t yet been han-
dled, the Request and Response
objects are passed to the OnAction
handler of the first action item

matched by its properties to
handle the request and build the
Response content.

If the OnAction handler leaves
Handled set to True (the default)
then provided no response has
been sent, the web dispatcher
calls its AfterDispatch event han-
dler and no further action items
are called, but if the OnAction han-
dler sets Handled to False then the
Request and Response are passed to
the next matching action item’s
OnAction event until all matching
action items are exhausted or until
Handled is set to True by one of
them. If at this stage the request
hasn’t been signalled as handled
then the default action item’s OnAc-
tion handler is called: if this
doesn’t set Handled to True then no
Response content will be sent and
the web application will end here,
otherwise if Handled is set the
AfterDispatch event is triggered,
provided the response hasn’t yet
been sent. Next, the AfterDispatch
event handler has it’s Handled
parameter set to True, setting it to
False will signal that the request
hasn’t been handled. After all that,
the final stage is performed by the
Application object: if the request
has been handled and the
response hasn’t yet been sent,
then Application will call the
response object’s SendResponse
method. If the request hasn’t been
handled then no response is sent.
Figure 3 shows the flow of execu-
tion within the WebModule or the
WebDespatcher.

Try experimenting with the
CHAINED application (which is on
the disk) yourself by changing the
last line in any of the OnAction
event handlers so that only one or
two of the three chained matching
action items are called.

* = the v alue of the handled
parameter passed to the
event b y the web dispatc her

➤ Figure 3

Web Application Type Application Object Type Request Object Type Response Object Type

CGI application
($APPTYPE CONSOLE)

TCGIApplication TCGIRequest TCGIResponse

Windows CGI application
($APPTYPE GUI)

TCGIApplication TWinCGIRequest TWinCGIResponse

ISAPI or NSAPI Server API DLL TISAPIApplication TISAPIRequest ISAPIResponse

➤ Table 2: Web application, request and response object types

40 The Delphi Magazine Issue 28

Property Meaning

MethodType The request method of TMethodType

ContentFields TStrings list of parsed POSTed content fields

CookieFields TStrings list of cookie fields

QueryFields TStrings list of parsed GET query fields

Method ‘GET’, ‘PUT’, ‘POST’ or ‘HEAD’

ProtocolVersion The HTTP protocol version (HTTP/1.0)

URL The full URL of the request’s target - the web
application

Query The URL-encoded GET query string

PathInfo That part of the path after the application name eg
PathInfo = ‘switch’ in the URL http://www.acme.com/
script.exe/switch?field=value&field2=value

PathTranslated The URL translated to a server relative path

Authorization The HTTP authentication used to identify a user

Cookie List of semi-colon delimited URL-encoded cookies

Accept The list of MIME types that the client/browser can
handle (derived from the Accept request header item)

From The email address of the user making the request: not
always supported by some browsers for security reasons

Host The server host name

IfModifiedSince User only wants information changed since this date

Referer The URL of the web document which generated the
request

UserAgent The user’s browser, such as Mozilla/3.0 for Netscape 3.0

ContentEncoding The encoding scheme for the content

ContentType The MIME type of the POSTed content

ContentLength The length in bytes of any POSTed content

RemoteAddr The remote IP address of the user

RemoteHost The remote host name of the user making the request

ScriptName The path of the web application

ServerPort The port number on which the server is running

➤ Table 3: Useful TWebRequest properties

A few points of interest. The
OnAction event of the default web
action item may be called twice:
once as part of the chain of multi-
ple action item events and again if
the request is still not handled
after all chained action items have
been called. Also, a web applica-
tion can function without any
action items because the request
can be handled within the Before-
Dispatch event handler.

The BeforeDispatch and After-
Dispatch handlers can be useful for
building the opening and closing
parts of the Reponse such as the
title and header tags of the content.
And finally, the class type of the
actual TWebRequest and TWebRe-
sponse instances depends on the
type of application as summarised
in Table 2.

TWebRequest
And TWebResponse
The TWebRequest and TWebResponse
base classes encapsulate the HTTP
request sent to the application and
the HTTP response returned by
the application, the application
type-specific request and response
classes (TCGIRequest/TCGIResponse
etc) are all derived from these two
base classes. The SHOWREQUEST
demo application displays the
properties of the WebDispatcher’s
Request instance: use the form in
GUESTBK.HTM to see SHOWRE-
QUEST working, or just append
some URL encoded quer yfields to
the web application’s URL.

The values of a TCGIRequest’s
properties are obtained from the
appropriate CGI environment
variable, for a TWinCGIRequest the
property values come from the
request INI file and for a TISAPIRe-
quest they’re obtained from a
combination of calls to the Exten-
sion Control Block’s GetServer-
Variable function and the values of
some of the ECB fields.

Table 3 lists some of the more
useful TWebRequest properties and
their purpose in identifying the
request.

For a GET request the form fields
are contained in the QueryFields
string list property; for a POST
request the form fields are con-
tained in the ContentFields string

list property. This makes access-
ing request data as easy as using
the TStringList’s Values property
to retrieve field values by name. As
we’ve seen, the PathInfo property
is that part of the URL used to
select which web dispatcher
action item(s) is used to handle the
request. UserAgent is very useful

for customising response content
to the browser’s capability: the
response content for a Netscape
2.0 (or later) client could contain
HTML frame tags or even HTML
scripting code which the browser
can understand whereas the
response content for other less-
capable browsers could be just

December 1997 The Delphi Magazine 41

Status code ReasonString

200 OK

204 No content

301 Document permanently moved

302 Document temporarily moved

401 Unauthorised

404 Not found

500 Internal server error

➤ Table 4: Useful HTTP status codes and reason strings

standard HTML, as long as it didn’t
use frames.

If your wondering about the pur-
pose of the Cookie property, check
out Bob Swart’s article in Octo-
ber’s issue where he uses cookies
to maintain state within a web
application. I’ll talk more about
cookies next month and discuss
the various approaches to main-
taining state between web pages
and we sessions.

TWebRequest provides a number
of useful methods: WriteClient and
WriteString are used to send data
back to the client, the method TWe-
bResponse.SendResponse actually
uses WriteString to achieve it’s
purpose. Conversely, ReadClient
and ReadString read data from the
client as is necessary for a POST
request though you’ll rarely need
to do so. The ExtractFields
method breaks down a delimited
string into a string list, and is used
by the methods ExtractContent-
Fields, ExtractCookieFields and
ExtractQueryFields which break
down response content, cookie
strings and query field strings into
string lists. GetFieldByName
retrieves a specified CGI request
variable as a string.

As I’ve said, TWebResponse is the
abstract base class for TCGIRe-
sponse, TWinCGIResponse and TISA-
PIResponse, in fact the first two
classes are the very same:
TWinCGIResponse is simply a class
reference to TCGIResponse.

The most important and most
used property of TWebResponse is
Content which represents the data
sent back to the client as we’ve
already seen in previous examples.
Similar to Content is the Content-
Stream property which specifies a
stream from which the response
content is derived. HTTPRequest
identifies the web request for
which the response must be
provided.

Other properties are important
for further defining the response.
The numeric StatusCode property
specifies the HTTP status code for
a particular request. Status codes
specify how the server (and
browser) should treat the
response, for example a status-
code of 500 will cause the browser

to display a “Server Error” mes-
sage. A full list of HTTP status
codes and their purpose or mean-
ing are listed at www.w3c.com but
I’ve listed a few of the more useful
ones in Table 4. Associated with
StatusCode is the ReasonString
property which is a string descrip-
tion of the status code’s meaning,
but you don’t have to set this every
time you set StatusCode because
it’s done for you automatically:
obviously this means that if you
want to set your own ReasonString
then do so after setting StatusCode!
The default response status code
of 200 indicates a normal response
containing some content.

The ContentType string property
allows the MIME type (default
text/html) to be specified, the list
of MIME types the client can
handle are found in the Accept
property of the Request object. The
Expires TDateTime property speci-
fies when the response will
become out of date, this has an
impact on the web page caching
performed by some browsers;
LastModified indicates the date
and time the content was last
changed at the server which is
useful because a client can send a
HEAD request (that is, TWebRe-
quest.MethodType = mtHead) which
just requests a response header
without the content (thus avoiding
a possibly wasteful transfer of a
large amount of data), therefore by
examining LastModified the client
can decide to retrieve the response
content using a subsequent GET
request if a locally stored copy of
the response content is older than
the last modified date.

You don’t have to specify values
for each and every response prop-
erty, the relevant defaults are set
by the Request object’s SendRe-
sponse method which builds the
response header.

I mentioned TWebResponse.Send-
Response whose purpose is to
output a response header followed
by whatever is assigned to the Con-
tent or ContentStream properties.
other methods for sending
response content include SendRe-
direct sends a redirection header
as part of the response header:
redirection headers simply point
or redirect the client to retrieve
the URL specified in the argument
to this method; SendStream sends
its TStream argument to the client
but to work correctly SendResponse
must be called beforehand to set
up the response header; SetCook-
ieField sends at least one cookie
to the client. As promised we’ll
look at this method and at cookies
in more detail a bit later.

One point worth noting about
the ContentStream property is that
you don’t have to worry about free-
ing the assigned stream as the Sen-
dResponse method frees it for you.

Until next month
So far we've looked in detail at how
the WebModule and WebDispatcher
work, how the request and
response objects are passed to the
dispatcher's event handlers, and
how the path of these objects can
be controlled from within the
event handlers. Which concludes
this month's discussion of the
basic structure of a Delphi 3.0 web
application.

42 The Delphi Magazine Issue 28

Next month we'll take an in-
depth look at ways of producing
response content using the page
producer classes and ways of
saving state in web applications
(Bob Swart covered these topics to
some degree in October's article),
as well as a detailed look at writing
ISAPI and NSAPI web applications
which use the BDE. I'll also show
how to set up a local web-server
(for free) for developing and
testing your web applications.

Until then...

John O’Connell is a freelance
software consultant/developer
specialising in Delphi and
database application develop-
ment. Email him on 73064.74@
compuserve.com.

	Gateway Interfaces
	Server API Or CGI?
	Request Methods...
	Which Request Method?
	WebModules, WebRequests And WebReponses
	The WebDispatcher
	TWebRequest And TWebResponse
	Until next month

